Vers version FRANCAISE

Fermat's little theorem
 

Fermat's little  theorem (condensed):

In mathematics, the Fermat's little theorem is a result of the modular arithmetic, which can also demonstrate itself with the tools of the elementary arithmetic.

 

It expresses itself as follows. If 'a' is a not divisible integer by p such as p is a prime number, then a p-1 -1 is a multiple of p. The corollary of this theorem is that, for every 'a' interger and 'p' prime number, then ap -1  is a multiple of p.

 

He owes his name to Pierre de Fermat (on 1601 - 1665) who expresses it the first time on October 18th, 1640.

 

I not agree factorized definition :   :

 

We can read that   , but , if n is divisible by p , is not true now : example : 10(5-1) -1 is not divisible by 5

what mean ?

 

It's mean that if I divide n by p the rest of this division is 0

example: the rest of 12 / 4 = 0 , it will be noted :

 

the Fermat's poly polygonals "key" formula

If we use the Pierre de Fermat's  poly-polygonals formula : and we develop the numerator, then we have a formula like this:  (pow mean powered by)

Notation n! = Factorielle n

instead of 1x2x3x4... n , we write n!

 1x2x3x4 = 4! = à 24

Example for =

 

Fermat has proved all his theories (little ,and last theorem) for all power of n , so it is absolutely excluded that Fermat have built them by EACH indices on n. example for 7! indices are 1,21,175,735,1634,1764,720 (see before) . But we can , with a small trick, found the sum off all of them.

 

How to find the sum of all indices ?

 

If ,we shift n by 1 (n=1) then we get 

 

if n=1 then

 

If we develop n(n+1)(n+2)...(n+p) , the sum of all indices is equal of the factorial of denominator ,  example for 7! , 1+21+175+735+1634+1764+720 = 5040

 

Development of numerator:

if p numbers of factors of n(n+1)(n+2).. then

 

.

=

The FIRST exponent = numbers of factors (as Pascal's board),  1p

The FIRST indice is equal to 1

The LAST  indice = factorial -1 of numbers of factors.

 

Exemple : nombre de facteurs = 7

 

<=>

 

The FIRST exponent = numbers of factors : 1n7

The FIRST indice is equal to 1 1+21+175+735+1624+1764+720=5040

The LAST  indice = factorial -1 of numbers of factors.1+21+175+735+1624+1764+720=5040 , 1 x 2 x 3 x 4 x 5 x 6 =720

 

Shifting n by 1

if n = 1

For example for 7 factors

if n = 1 then ,

 

1+21+175+735+1624+1764+720=5040 = 7!

 

Demonstration of Fermat's small theorem

 

Primaries numbers and factotials

If a number is primary , understand divisible only by himself or 1 , imply that only that the last factor of his factorial is divisible by this number , by example , 7 is primary so 7! = 1 x 2 x 3 x 4 x 5 x 6 x 7 only the last factor , 7 , is divisible by  7 , and NOT the others 2,3,4,5,6 (we get a NOT INTEGER one , we get a decimal number or real )

 

We deduct also that if a number is primary his factorial LESS ONE is not divisible by this number 2 x 3 x 4 x 5 x 6 is not divisible by 7.

 

Terms of adding indices and primaries:

 

If  from the development of n(n+1)(n+2).... whose p ,numbers of factors, is primary and where we  remplace n by 1

[1+ (a+b+c)+ [(p-1)! ] is divisible by p equal also :  [1] + [a+b+c]+ [(p-1)!]

 

Concatenation (grouping) in 2 terms

 

We regroup all the terms of 1+...+ (p-1)! ....  in 2 terms :

p! =

1 + (a+b+c)

=

(p-1) x (p-1)!

+

  (p-1)!

exemple : 5! = 120

4(1x2x3x4)

+

1x2x3x4

We concatenate  1 + a + b+ c ...and we add the last term  (p-1)!

Example : n(n+1)(n+2)(n+3)(n+4) , if n=1 then we get 1(1+1)(1+2)(1+3)(1+4) ; sum of all indices  5! = 120 ,  last indice = 4! =24 then 120 = 96+24

note that if we factorise the twice terms by 24 then 120 = 24(4+1)

 

120=4x24 + 1x 24 , first =  4x4x3x2x1 , last = 4x3x2x1

That still true for promary numbers of factors or not

 

 

n(n+1)...(n+p-1)=n^(p-1)+..(p-1)n ,p in numbers of factors
 
 
1st terme
+ 2nd
Total
1x2=
1
1





1
2
1x2x3=
1
3
2




2
6
1x2x3x4=
1
6
11
6



6
24
1x2x3x4x5=
1
10
35
50
 


24
120
1x2x3x4x5x6=
1
15
85
225
274
 

120
720
1x2x3x4x5x6x7=
1
21
175
735
1624
1764
 
720
5040
1x2x3x4x5x6x7x8=
1
28
322
1960
6769
13132
13068
5040
 

Nota:development of n(n+1)(n+2)(n+3)(n+4) = 1n5+10n4+35n3+50n2+24n

Concatenation  in 3 terms , first / intermediate / last

P! is a sum of p terms which the first equal to 1 and the last one  = (p-1)! , We add all intermediate terms in a second term =

p!-1-(p-1)! = p!-(1+(p-1)!)  so 120 = 1 + [120-(1+24)] + 24 = 1 + 95 + 24

The second term is divisible by p (as show bellow) , so we can discard it..

If p is primary , then (p-1)! is not divisible by p , 1 is not divisible by p , 1+ [p!-(1+(p-1)!)] + (p-1)! is divisible by p

<=>

If [1] + [p!-(1+(p-1)!] + [(p-1)!] , 0 (mod p) , 1+(p-1)! is divisible par p .

More details

p! =  ( p=5 => 1x2x3x4x5=120)

0 (mod p)

1st + 2nd terms

+

Last term

(p-1)(p-1)!

 (5-1)(5-1)(5-2)(5-3)(5-4) = 4x4x3x2x1 = 96

4x4x3x2x1 not divisible by 5

+

(p-1)!

4x3x2x1 = 24

4x3x2x1 not divisible by 5

0 (mod p) =

 

0 (mod p)

1st  = 1

+

+ 2nd terms

+

Last term

1

+

p! - 1 - (p-1)! = p! - (1+(p-1)!)

120-1-24= 120 - (25) = 95

+

+ (p-1)!

1

+

p! -

1+(p-1)!

+

+ (p-1)!

0 (mod p)

 

0 (mod p)

= le premier + dernier terme

 

0 (mod p)

p! 0 (mod p) => , [1]+[1+(p-1)!]+[(p-1)!] = [1+(p-1)!] + [1+(p-1)!]  0 (mod p) ,

Those 2 terms are equals so     

Conclusion:

 

In Fermat's poly-polygonals formula , n(n+1)(n+2)...(n+(p-1)) , if p numbers of factors and if we shift n by 1 then :

If p is primary , 1 + 1*2*3...(p-1) is divisible by p

 

n     0 (mod p ) <=> the rest of n/p = 0 

n     0 (mod p ) <=> the rest of n/p is not =0 

 

You can see  this item

 

 

For example p=7 then 1+1*2*3*4*5*6 = 721 divisible by 7

 

Replace now 1 by n = get the Fermat's small theorem

If n(n+1)(n+2)...(n+p-1) = [1np]+[anp-1+bnp-2]+[(p-1)!n] then

 

If 1+(p-1)! 0 (mod p) then n[1+(p-1)!] 0 (mod p)

n+n(p-1)! 0 (mod p)

et aussi : n+n(p-1)! 0 (mod n)

 

In the last term of  1n5+10n4+35n3+50n2+24n , 24n + n = 25n is divisible by 5 , so the first - n is divisible by 5 , it means that if we adding n to the last term for make it divisible we have to subtract n to the fisrt  ( np -n)

 

si n+n(p-1)! 0 (mod p) alors np - n 0 (mod p)

 

 Prime  number's guess in corollary of Fermat's small theorem

n is prime  if  (or )  

Shoud redable as following : if the reminder of  2n-2 / n is 0 <=> if the reminder of 2n-1-1 /n est 0

Ensuing of Fermat's small theorem,if a=2; if remainder (= modulo 1) of a n-a/a  = 0 then n is prime number (if not n is not prime)

It's only a guess because it's necessary to be able to demonstrate it (*),2 n Exceeds the capacities of calculations and calculators...

(I'm writing modulo 1 because it's the computer function , should be )

 

It's very important to see that in this guess only 2n put numbers into 2 well separed groups , primes and non primes

    

(*) Professor Henry Cohen of the university of Bordeaux notes " We can conclude nothing if 2n-1 1 is divisible by n, but it is rather likely in this case that n is prime (Number's history Tallandier Edition 2007)

This conjecture is not true for (n< 1000) 341,561,645 !!!:

Comments

 

 Matrice showing this guess (a=2)

Fermat small theorem don's separate prime and not prime as well as wish.:

 

Samples :

a=3 n=6 , 6 is not prime , the 36-3/3 reminder should be <> 0

nb: 3 as  2 is prime...

 

n

36

36-3

 726/6

Rem

6 729 726 121 0

 

pour a=5 , n=10

 

n 510 510 -5 510 -5/5 Rem
10 9765625 9765620 976562 0

 

It's seems to be the same for all n/a = 2 ...

 

For a= 4 it's worse...

n 4n 4n-4 4n-4/4 r
2 16 12 6 0
3 64 60 20 0
4 256 252 63 0
5 1024 1020 204 0
6 4096 4092 682 0
7 16384 16380 2340 0

 

Small appended notes:

 

If we want to know if a number is divisible by other one of head you should:

 

If it's even divide it by 2

If it's odd substract it : "lui ôter une mesure"as would have written it Fermat....)

 

Ensue of binary algorithm

 .

n 2n 2n – 2 2n – 2 / n mod

1

2

0

0

0

2

4

2

1

0

3

8

6

2

0

4

16

14

3 1/2

1/2

5

32

30

6

0

6

64

62

10 1/3

1/3

7

128

126

18

0

8

256

254

31 3/4

3/4

9

512

510

56 2/3

2/3

10

1024

1022

102 1/5

1/5

11

2048

2046

186

0

12

4096

4094

341 1/6

1/6

13

8192

8190

630

0

14

16384

16382

1170 1/7

1/7

15

32768

32766

2184 2/5

2/5

16

65536

65534

4095 7/8

7/8

17

131072

131070

7710

0

18

262144

262142

14563 4/9

4/9

19

524288

524286

27594

0

20

1048576

1048574

52428 5/7

5/7

21

2097152

2097150

99864 2/7

2/7

22

4194304

4194302

190650 1/9

1/9

23

8388608

8388606

364722

0

24

16777216

16777214

699050 4/7

4/7

25

33554432

33554430

1342177 1/5

1/5

26

67108864

67108862

2581110 1/9

1/9

27

134217728

134217726

4971026 8/9

8/9

28

268435456

268435454

9586980 1/2

1/2

29

536870912

536870910

18512790

0

30

1073741824

1073741822

35791394 1/9

1/9

31

2147483648

2147483646

69273666

0

32

4294967296

4294967294

134217727 8/9

8/9

33

8589934592

8589934590

260301048 1/6

1/6

34

17179869184

17179869182

505290270 1/9

1/9

35

34359738368

34359738366

981706810 4/9

4/9

36

68719476736

68719476734

1908874353 5/7

5/7

37

137438953472

137438953470

3714566310

0

If mod = 0 then n is prime ... if not n is not

Important notice

by add one on two sides

Is 221 dividable by 7?

221-7=214

214/2=107

107-7=100

50/2=27

27-7=20

20/2=10

10/2=5

221 n'est pas divisible par 7

(31*7 reste 4)

 

 

Is 91 dividable by 7?

91-7=84

84/2=42

42/2=21

21-7=14

14-7=7

.

AccueilPrime numbers new guess

 

 

  

Patrick Stoltz le 18/10/2009

pstoltz@shemath.com