Prime numbers new guess

During this study, I try to visualize prime numbers, their distributions and the means of reduire major powers of 2...To do it, I use the topology of formed squares (according to the same as topologic squares principle) to refine / counter this guess.

 2n even and odd

 

Square topology formed by 2n are different according if n even or odd (Always and still)

 

To obtain an even root from even square (in binary for example) you can divide power by 2

28 = a square of 24 * 24 , 256 is a square of 16*16

On the other hand for a 2 odd you should divide this number by 2 (or apply 2 n-1), then form a rectangle composed by 2 even squares witch the smallest ridge is the root of the even square, and the big one  2 * the root of even square

Example: 25 = a rectangle of 2 (5-1)/2 * 2(2 (5-1)/2) or (2 (5+1)/2)

25 =  22 * 23 , 32 is a rectangle of 4 * 8

(V signify OR), will be explained following

Graphing  2n fly

This animation demonstrate also the Fermat's two square guess

 Guess : is 2 n-1 -1 / n mod 1 =0 is prime / Graphing Fermat's two squares guess

 

 

By definition a prime numbers is odd , except 2, there are in very precise group.

As showed by Riemann, odd numbers are in 1/2 + it axis, (even numbers in négative axis)

If n is always odd, n-1 is thus a power always even.

If apply  (for n odd), all primes numbers are drawing by a  2n even topologie ,square from witch we remove 1.

Then we divide by n for know if mod = 0 and if it's prime or not

 

This guess demonstrate also the Fermat's two square guess: all primes divided by 4 is modulo 1

To the left : This 24 square have a side of 22

n n-1 (n-1)/2

1 0


3 2 1 2 2
5 4 2 4 4
7 6 3 8 1
9 8 4 16 7
11 10 5 32 10
13 12 6 64 12
15 14 7 128 8
17 16 8 256 1
19 18 9 512 18
21 20 10 1024 16
23 22 11 2048 1
25 24 12 4096 21
27 26 13 8192 11
29 28 14 16384 28
31 30 15 32768 1
33 32 16 65536 31
35 34 17 131072 32
37 36 18 262144 36
39 38 19 524288 11
41 40 20 1048576 1
43 42 21 2097152 42
45 44 22 4194304 34
47 46 23 8388608 1
49 48 24 16777216 8
51 50 25 33554432 2
53 52 26 67108864 52
55 54 27 134217728 18
57 56 28 268435456 55
59 58 29 536870912 58
61 60 30 1073741824 60
63 62 31 2147483648 2
65 64 32 4294967296 61
67 66 33 8589934592 66
69 68 34 17179869184 25
71 70 35 34359738368 1
73 72 36 68719476736 1
75 74 37 137438953472 47
77 76 38 274877906944 25
79 78 39 549755813888 1
81 80 40 1099511627776 70
83 82 41 2199023255552 82
85 84 42 4398046511104 4
87 86 43 8796093022208 56
89 88 44 17592186044416 1
91 90 45 35184372088832 57
93 92 46 70368744177664 64
95 94 47 140737488355328 53
97 96 48 281474976710656 1
99 98 49 562949953421312 83

Modulo (rest off the strip,root divided by n) seems to be 1 or n-1

 

Because the square's topology always belongs = to one 2n peer for a square, I cut this square in bands(strips) and then divide it by n to find the modulo

This avoids among others the division by n of the complete square which represents hudge number

 

Study this asided board:

n = odd number

n-1=power of  "Fermat's square" (2 n-1)

 

(n-1)/2 = power of rooted square (=side) of "Fermat's square"

= root of a square witch we apply the Fermat's small theorem. (n odd -1 is even)

= remaining of square / n

example: for n=11 ; 2n-1 -1 /n : 210-1/11

Root of  210 = 25 =32

mod (32/11) = 10

Important notice

Following Prime's modulo  = 1 ou n-1

 

this modulo look like :

For N=5

Number (or his multiple) "exeeds" the root of "Fermat's square" by 1 (the square's edge)

4/5 =0 still 4 (modulo = n-1)

or look like

Example n=7

n or his multiple = the root of "Fermat's square" -1

Is these two cases it's still 1 ; the -1 of

Patrick Stoltz le 9/05/2010

pstoltz@shemath.com

 

AccueilPrime numbers 2